Respuesta :
Assuming you mean
[tex]-5\cdot \frac{\frac{5}{6}}{-2\left(\frac{1}{6}\right)}[/tex]
Lets begin!
First remove the parenthesis
[tex]\frac{\frac{5}{6}}{-2\cdot \frac{1}{6}}[/tex]
[tex]\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \ -\frac{\frac{5}{6}}{2\cdot \frac{1}{6}}[/tex]
[tex]\mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a} \ \textgreater \ \frac{\frac{5}{6}}{2\cdot \frac{1}{6}}=\frac{5}{2\cdot \:6\cdot \frac{1}{6}} \ \textgreater \ -\frac{5}{2\cdot \:6\cdot \frac{1}{6}}[/tex]
Now simply multiply the numbers
[tex]-\frac{5}{12\cdot \frac{1}{6}}[/tex]
Now we have
[tex]-5\left(-\frac{5}{12\cdot \frac{1}{6}}\right)[/tex]
[tex]\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \ 5\cdot \frac{5}{12\cdot \frac{1}{6}}[/tex]
[tex]\mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \ \frac{5\cdot \:5}{12\cdot \frac{1}{6}}[/tex]
Multiply the numbers again
[tex]\frac{25}{12\cdot \frac{1}{6}}[/tex]
Lets break down the denominator
[tex]12\cdot \frac{1}{6}[/tex]
[tex]\mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \ \frac{1\cdot \:12}{6} \ \textgreater \ \mathrm{Apply\:rule}\:1\cdot \:a=a \ \textgreater \ \frac{12}{6} \ \textgreater \ 2[/tex]
Therefore our final answer is
[tex]\frac{25}{2}[/tex]
Hope this helps!
If you meant
[tex]\frac{-5\left(\frac{5}{6}\right)}{-2\left(\frac{1}{6}\right)}[/tex]
Please let me know as it is a different process but the same answer.
[tex]-5\cdot \frac{\frac{5}{6}}{-2\left(\frac{1}{6}\right)}[/tex]
Lets begin!
First remove the parenthesis
[tex]\frac{\frac{5}{6}}{-2\cdot \frac{1}{6}}[/tex]
[tex]\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \ -\frac{\frac{5}{6}}{2\cdot \frac{1}{6}}[/tex]
[tex]\mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a} \ \textgreater \ \frac{\frac{5}{6}}{2\cdot \frac{1}{6}}=\frac{5}{2\cdot \:6\cdot \frac{1}{6}} \ \textgreater \ -\frac{5}{2\cdot \:6\cdot \frac{1}{6}}[/tex]
Now simply multiply the numbers
[tex]-\frac{5}{12\cdot \frac{1}{6}}[/tex]
Now we have
[tex]-5\left(-\frac{5}{12\cdot \frac{1}{6}}\right)[/tex]
[tex]\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \ 5\cdot \frac{5}{12\cdot \frac{1}{6}}[/tex]
[tex]\mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \ \frac{5\cdot \:5}{12\cdot \frac{1}{6}}[/tex]
Multiply the numbers again
[tex]\frac{25}{12\cdot \frac{1}{6}}[/tex]
Lets break down the denominator
[tex]12\cdot \frac{1}{6}[/tex]
[tex]\mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \ \frac{1\cdot \:12}{6} \ \textgreater \ \mathrm{Apply\:rule}\:1\cdot \:a=a \ \textgreater \ \frac{12}{6} \ \textgreater \ 2[/tex]
Therefore our final answer is
[tex]\frac{25}{2}[/tex]
Hope this helps!
If you meant
[tex]\frac{-5\left(\frac{5}{6}\right)}{-2\left(\frac{1}{6}\right)}[/tex]
Please let me know as it is a different process but the same answer.