Respuesta :

tan(60)/cos(45) = (sin(60)/cos(60))/cos(45)
= ((√3/2)/(1/2))/(√2/2) = (√3)/(√2/2) = (2√3)/(√2)
= ((2√3)(√2))/((√2)(√2)) = (2√6)/2 = √6

If any step doesn't makes sense, hmu!

Answer:

[tex]\sqrt6[/tex]

Step-by-step explanation:

We are given that [tex]\frac{tan60^{\circ}}{cos45^{\circ}}[/tex]

We have to evaluate tan 60 degrees over cos 45 degrees

We know that [tex]tan 60=\sqrt3[/tex]

[tex]cos45=\frac{1}{\sqrt2}[/tex]

Substitute the values then we get

[tex]\frac{tan60^{\circ}}{cos45^{\circ}} =\frac{\sqrt3}{\frac{1}{\sqrt2}}[/tex]

When a denominator in fraction then the number in the denominator of denominator fraction will convert into multiply

Suppose , we have

[tex]\frac{2}{\frac{2}{3}}=\frac{2\times 3}{2}=3[/tex]

Using this rule

[tex]\frac{tan60^{\circ}}{cos45^{\circ}} =\sqrt3\times \sqrt2=\sqrt6[/tex]

[tex]\frac{tan60^{\circ}}{cos45^{\circ}} =\sqrt6[/tex]

Hence, [tex]\frac{tan60^{\circ}}{cos45^{\circ}} =\sqrt6[/tex]