Respuesta :
False.
[tex] \lim_{x \to a} [3f(x)^{2} - 4g(x)] = 3[\lim_{x \to a}f(x)]^{2} - 4\lim_{x \to a}g(x) = 3(4)^{2} - 4(3) = 48 - 12 = 36[/tex]
[tex] \lim_{x \to a} [3f(x)^{2} - 4g(x)] = 3[\lim_{x \to a}f(x)]^{2} - 4\lim_{x \to a}g(x) = 3(4)^{2} - 4(3) = 48 - 12 = 36[/tex]
Since the result is not equal to 10 hence the expression [tex]\lim_{x \to a}[3f(x)^2-4g(x)]=10[/tex] is FALSE
- Given the expression [tex]\lim_{x \to a}[3f(x)^2-4g(x)]=10[/tex]
- We are to check if the expression is correct given that [tex]\lim_{x \to a} g(x) = 3 \ and \ \lim_{x \to a} f(x) = 4[/tex]
The limit above can be written as [tex]= 3\lim_{x \to a}[f(x)^2]-4[ \lim_{x \to a} g(x)]\\[/tex]
Substituting the given parameters
[tex]= 3\lim_{x \to a}[f(x)^2]-4[ \lim_{x \to a} g(x)]\\= 3(4)^2-4(3)\\=3(16) - 12\\=48-12\\=36[/tex]
Since the result is not equal to 10 hence the expression [tex]\lim_{x \to a}[3f(x)^2-4g(x)]=10[/tex] is FALSE
Learn more here: https://brainly.com/question/23935467