Respuesta :
Answer: 17328.7 years
Explanation:
Half-life of sample of carbon-14 = 5730 years
[tex]\lambda =\frac{0.693}{t_{\frac{1}{2}}}=\frac{0.693}{5730}=1.2\times 10^{-4} years^{-1}[/tex]
[tex]N=N_o\times e^{-\lambda t}[/tex]
N = amount left = 12.5 g
[tex]N_0[/tex]= initial amount = 100 g
[tex]\lambda[/tex]= disintegration constant= [tex]1.2\times 10^{-4} years^{-1}[/tex]
t= ?
[tex]12.5=100\times e^{-1.2\times 10^{-4}\times t}[/tex]
[tex]t=17328.7years[/tex]
Thus the bone is 17328.7 years old.