Respuesta :

use the quadratic formula:-

x = [-(-8) +/- sqrt((-8)^2 -4*41)] / 2  

x =  ( 8 + sqrt (-100) / 2  and  (8 - sqrt(-100) / 2

 =  4 + 5i , 4 - 5i     Answer
Lanuel

Based on the calculations, the value of x is equal to 4 + 5i or 4 - 5i.

Given the following data:

  • [tex]x^2-8x+41=0[/tex]

How to solve a quadratic equation.

In this exercise, you're required to determine the value of x by solving for the factors (roots) of the given quadratic equation.

In Mathematics, the standard form of a quadratic equation is given by;

[tex]ax^2 +bx+c=0[/tex]

Where:

  • a = 1.
  • b = -8.
  • c = 41.

For the quadratic formula:

Mathematically, the quadratic formula is given by:

[tex]x = \frac{-b\; \pm \;\sqrt{b^2 - 4ac}}{2a}[/tex]

Substituting the parameters into the formula, we have;

[tex]x = \frac{-(-8)\; \pm \;\sqrt{(-8)^2\; - \;4(1)(41)}}{2(1)}\\[/tex]

x = 4 + 5i or 4 - 5i.

Read more on quadratic equation here: https://brainly.com/question/1214333