Respuesta :
use the quadratic formula:-
x = [-(-8) +/- sqrt((-8)^2 -4*41)] / 2
x = ( 8 + sqrt (-100) / 2 and (8 - sqrt(-100) / 2
= 4 + 5i , 4 - 5i Answer
x = [-(-8) +/- sqrt((-8)^2 -4*41)] / 2
x = ( 8 + sqrt (-100) / 2 and (8 - sqrt(-100) / 2
= 4 + 5i , 4 - 5i Answer
Based on the calculations, the value of x is equal to 4 + 5i or 4 - 5i.
Given the following data:
- [tex]x^2-8x+41=0[/tex]
How to solve a quadratic equation.
In this exercise, you're required to determine the value of x by solving for the factors (roots) of the given quadratic equation.
In Mathematics, the standard form of a quadratic equation is given by;
[tex]ax^2 +bx+c=0[/tex]
Where:
- a = 1.
- b = -8.
- c = 41.
For the quadratic formula:
Mathematically, the quadratic formula is given by:
[tex]x = \frac{-b\; \pm \;\sqrt{b^2 - 4ac}}{2a}[/tex]
Substituting the parameters into the formula, we have;
[tex]x = \frac{-(-8)\; \pm \;\sqrt{(-8)^2\; - \;4(1)(41)}}{2(1)}\\[/tex]
x = 4 + 5i or 4 - 5i.
Read more on quadratic equation here: https://brainly.com/question/1214333