Respuesta :
The
number of bacteria, b:
b(t) = 15t^2 − 60t + 125,
temperature, t:
t(h) = 3h + 4
Find the number of bacteria in the food in h hours => you need to find b as a function of h, i.e. b(h) = b[t(h)]
b [t (h)]= 15 [t(h) ]^2 - 60 [t(h)] + 125
b(h) = 15 [ 3h + 4}^2 - 60 [3h + 4] + 125
b(h) = 15[9h^2 + 24h + 16] - 180h - 240 + 125
b(h) = 135h^2 + 360h + 240 - 180h + 125
b(h) = 135h^2 + 180h + 365 <---------- answer
b(t) = 15t^2 − 60t + 125,
temperature, t:
t(h) = 3h + 4
Find the number of bacteria in the food in h hours => you need to find b as a function of h, i.e. b(h) = b[t(h)]
b [t (h)]= 15 [t(h) ]^2 - 60 [t(h)] + 125
b(h) = 15 [ 3h + 4}^2 - 60 [3h + 4] + 125
b(h) = 15[9h^2 + 24h + 16] - 180h - 240 + 125
b(h) = 135h^2 + 360h + 240 - 180h + 125
b(h) = 135h^2 + 180h + 365 <---------- answer
b(t) = 15t2 - 60t + 125
t(h) = 3h + 4
So it follows that b(h) = b(t(h))
Then 15(3h + 4)2 - 60 ( 3h + 4) + 125
So b(h) = 15 (9h^2 + 24h + 16) - 60 ( 3h + 4) + 125
b(h) = 135h^2 + 360h + 240 - 180h - 240 + 125
b(h) = 135h^2 + 180h - 125
t(h) = 3h + 4
So it follows that b(h) = b(t(h))
Then 15(3h + 4)2 - 60 ( 3h + 4) + 125
So b(h) = 15 (9h^2 + 24h + 16) - 60 ( 3h + 4) + 125
b(h) = 135h^2 + 360h + 240 - 180h - 240 + 125
b(h) = 135h^2 + 180h - 125