Respuesta :
Answer: P(A|B)=[tex]\dfrac{32}{49}[/tex]
Step-by-step explanation:
Since we have given that
P(A∩B)= [tex]\dfrac{4}{7}[/tex]
and P(B) = [tex]\dfrac{7}{8}[/tex]
We need to find P(A|B).
As we know the formula for "Conditional Probability ":
[tex]P(A\mid B)=\dfrac{P(A\cap B)}{P(B)}\\\\P(A\mid B)=\dfrac{\dfrac{4}{7}}{\dfrac{7}{8}}\\\\P(A\mid B)=\dfrac{4\times 8}{7\times 7}\\\\P(A\mid B)=\dfrac{32}{49}[/tex]
Hence, P(A|B) = [tex]\dfrac{32}{49}[/tex]