Respuesta :

d.32/49 is your correct answer

Answer: P(A|B)=[tex]\dfrac{32}{49}[/tex]

Step-by-step explanation:

Since we have given that

P(A∩B)= [tex]\dfrac{4}{7}[/tex]

and P(B) = [tex]\dfrac{7}{8}[/tex]

We need to find P(A|B).

As we know the formula for "Conditional Probability ":

[tex]P(A\mid B)=\dfrac{P(A\cap B)}{P(B)}\\\\P(A\mid B)=\dfrac{\dfrac{4}{7}}{\dfrac{7}{8}}\\\\P(A\mid B)=\dfrac{4\times 8}{7\times 7}\\\\P(A\mid B)=\dfrac{32}{49}[/tex]

Hence, P(A|B) = [tex]\dfrac{32}{49}[/tex]