Respuesta :
magnitude= 180.278 pounds
((75 3/-50)^2+ (75+50 3)^2)
352500
50 13
direction= 63.90
tan^-1 (( 75+50 3)/(75 3-50))
where you see the big spaces I mage put the check mark symbol
((75 3/-50)^2+ (75+50 3)^2)
352500
50 13
direction= 63.90
tan^-1 (( 75+50 3)/(75 3-50))
where you see the big spaces I mage put the check mark symbol
Answer:
Resultant force =115.03 pounds
Direction of resultant force=81.8 degrees
Step-by-step explanation:
We are given that two forces
Let [tex]F_1=150 pounds[/tex]
[tex]F_2=100 pounds[/tex]
[tex]\theta_1=40^{\circ}[/tex]
[tex]\theta_2=170^{\circ}[/tex]
[tex]Sin(40^{\circ})=\frac{vertical component }{hypotenuse }[/tex]
[tex]0.643=\frac{vertcal component }{150}[/tex]
Vertical component of force[tex]F_0.643\times 150=96.45 [/tex]
Horizontal component =[tex]100cos (40^{\circ})=150\times0.766=114.9[/tex]
Vertical component of second force [tex]F_2= 100\times sin170=100\times 0.174=17.4[/tex]
Horizontal component of force [tex]F_2=100cos 170=100\times (-0.985)=-98.5[/tex]
Vertical component of resultant force=96.45+17.4=113.85
Horizontal component of resultant force=114.9-98.5=16.4
Magnitude of resultant force =[tex]\sqrt{(113.85)^2+(16.4)^2}=\sqrt{12961.8225+268.96}=\sqrt{13230.7825}[/tex]=115.03 pounds
Direction =[tex]tan^{-1}(\frac{vertical component}{horizontal component})[/tex]
Direction of resultant vector force=[tex]tan^{-1}(\frac{113.85}{16.4}=tan^{-1}(6.94)[/tex]=81.8 degrees