Respuesta :




y=2(cos(50=90n)=isin(50+90n))
take n=0 ,y=2(cos(50)+isin(50)) 

take n=1,y=2(cos(140)+ isin (140))

take n=2,y=2(cos(230)+ isin (230)) 

take n=3,y=2(cos(320)+isin(320)) 

Answer:

The fourth roots of 16(cos 200° + i sin 200°) are [tex]2(\cos 50^{\circ}+i\sin 50^{\circ}), 2(\cos 140^{\circ}+i\sin 140^{\circ}),2(\cos 230^{\circ}+i\sin 230^{\circ}), 2(\cos 320^{\circ}+i\sin 320^{\circ})[/tex].

Step-by-step explanation:

The given expression is

[tex]z=16(\cos 200^{\circ}+i\sin 200^{\circ})[/tex]

Using deMoivre's Theorem

[tex](\cos \theta+i\sin \theta)^n=\cos n\theta+i\sin n\theta[/tex]

[tex](z)^{\frac{1}{4}}=[16(\cos 200^{\circ}+i\sin 200^{\circ})]^{\frac{1}{4}}[/tex]

[tex](z)^{\frac{1}{4}}=2(\cos (200\times \frac{1}{4})^{\circ}+i\sin (200\times \frac{1}{4})^{\circ})[/tex]

[tex](z)^{\frac{1}{4}}=2(\cos 50^{\circ}+i\sin 50^{\circ})[/tex]

The four roots are in the form of

[tex](z)^{\frac{1}{4}}=2(\cos (50+90n)^{\circ}+i\sin (50+90n)^{\circ})[/tex]

For n=1,

[tex](z)^{\frac{1}{4}}=2(\cos 140^{\circ}+i\sin 140^{\circ})[/tex]

For n=2,

[tex](z)^{\frac{1}{4}}=2(\cos 230^{\circ}+i\sin 230^{\circ})[/tex]

For n=3,

[tex](z)^{\frac{1}{4}}=2(\cos 320^{\circ}+i\sin 320^{\circ})[/tex]

Therefore the fourth roots of 16(cos 200° + i sin 200°) are [tex]2(\cos 50^{\circ}+i\sin 50^{\circ}), 2(\cos 140^{\circ}+i\sin 140^{\circ}),2(\cos 230^{\circ}+i\sin 230^{\circ}), 2(\cos 320^{\circ}+i\sin 320^{\circ})[/tex].