Respuesta :

distance formula : sqrt ((x2 - x1)^2 + (y2 - y1)^2
(-10,5)....x1 = -10 and y1 = 5
(-8,-3)....x2 = -8 and y2 = -3
now sub
d = sqrt ((-8 - (-10)^2 + (-3 - 5)^2)
d = sqrt ((-8 + 10)^2 + (-8^2)
d = sqrt (2^2) + (-8^2)
d = sqrt (4 + 64)
d = sqrt 68
d = 8.25 <====
You can use the distance formula.

The distance, d, between points (x1, y1) and (x2, y2) is

[tex]d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex]

[tex]d = \sqrt{(-8 - (-10))^2 + (-3 - 5)^2} [/tex]

[tex]d = \sqrt{2^2 + (-8)^2} [/tex]

[tex]d = \sqrt{4 + 64} [/tex]

[tex]d = \sqrt{68} [/tex]

[tex]d = 8.24... [/tex]

Answer:

B) 8