Respuesta :

Answer:

[tex]\frac{-18z^{2}-37z-46}{z+2}[/tex]

Step-by-step explanation:

The given expression is

[tex]7-2z-4(\frac{z^{3}-z^{3}+4z^{2}+11z+14}{z+2})[/tex]

First, we have to apply distributive property

[tex]7-2z+\frac{-16z^{2}-44z-56}{z+2}=7-2z-\frac{16z^{2}+44z+56}{z+2}[/tex]

Then, we sum each term with the fraction, and solve the rest of operations, as follows

[tex]\frac{(7-2z)(z+2)-(16z^{2}+44z+56)}{z+2}\\\frac{7z+14-2z^{2}-4-16z^{2}-44z-56}{z+2}\\\frac{-18z^{2}-37z-46}{z+2}[/tex]

Therefore, the equivalent expression is

[tex]\frac{-18z^{2}-37z-46}{z+2}[/tex]

1wlti

Answer:

A -4z^3+4z^2+6z+35

Step-by-step explanation:

on edge 2022