△DNS∼△ARH . What is the value of x? https://static.k12.com/nextgen_media/assets/8117851-NG_GMT_DP024_42_001.png
Enter your answer in the box.

Respuesta :

im doing the same quiz right now im in k12 can you help me with the questions?

Given △DNS∼△ARH. (Refer to the attached image)

When triangles are similar, then the ratio all three pairs of corresponding sides are equal.

Since, △DNS∼△ARH

Therefore, [tex] \frac{DN}{AR}=\frac{NS}{RH}=\frac{DS}{AH} [/tex]

Substituting the measurements of the corresponding sides.

[tex] \frac{72}{21.6}=\frac{NS}{RH}=\frac{110}{x} [/tex]

Equating the first and last ratio of the corresponding sides,

[tex] \frac{72}{21.6}=\frac{110}{x} [/tex]

Cross multiplying in the above equation, we get

[tex] 72 \times x = 110 \times 21.6 [/tex]

[tex] 72 \times x = 2376 [/tex]

[tex] x=\frac{2376}{72} [/tex]

x= 33.

Therefore, the value of x is 33.

Ver imagen pinquancaro