Select all irrational numbers.
a.) √1/4
b.) √2/4
c.) √3/4
d.) √4/4
e.) √5/4

Note: these are all the square root of FRACTIONS they are not being divided!!!




Respuesta :

Rational: a.) and d.)
Irrational: b.), c.), and e.)

Answer:

[tex]b.\sqrt{\frac{2}{4}}[/tex]

c.[tex]\sqrt{\frac{3}{4}}[/tex]

[tex]e.\sqrt{\frac{5}{4}}[/tex]

Step-by-step explanation:

Rational number: The number which can be written as [tex]\frac{p}{q}[/tex] , where p and q are integers,[tex]q\neq 0[/tex]

Irrational number: When the number  is not rational number then, the number is called irrational number.

We have to find the irrational numbers.

a.[tex]\sqrt{\frac{1}{4}}[/tex]

We can write as

[tex]\frac{1}{2}[/tex]

Because [tex]\sqrt{4}=2[/tex]

[tex]\frac{1}{2}[/tex] is a rational number because 1 and 2 are both integers and [tex]2\neq 0[/tex]

Hence, a is not true.

b.[tex]\sqrt{\frac{2}{4}}[/tex]

[tex]\frac{1}{\sqrt2}[/tex]

We know that [tex]\sqrt2[/tex] is irrational number.

When a rational number is divided by irrational number then we get a irrational number.

[tex]\frac{1}{\sqrt2}[/tex] is irrational number.

c.[tex]\sqrt{\frac{3}{4}}[/tex]

[tex]\frac{\sqrt3}{2}[/tex]

We know that

[tex]\sqrt3[/tex] is irrational number.Therefore,

[tex]\frac{\sqrt3}{2}[/tex] is irrational number.

Hence, option c is true.

d.[tex]\sqrt{\frac{4}{4}}[/tex]

[tex]\sqrt1[/tex]

[tex]\sqrt1=1[/tex]

1 is rational number.

Hence, option d is false.

e.[tex]\sqrt{\frac{5}{4}}[/tex]

[tex]\frac{\sqrt5}{2}[/tex]

We know that [tex]\sqrt5[/tex] is irrational number

Therefore, [tex]\frac{\sqrt5}{2}[/tex] is irrational number.

Hence, option e is true.