Respuesta :
ANSWER
[tex](g \circ \: h)(0) = 8[/tex]
EXPLANATION
The given function
[tex]g(x) = 2x[/tex]
[tex]h(x) = {x}^{2} + 4[/tex]
We want to find the composition of the function,
[tex](g \circ \: h)(x) = g(h(x))[/tex]
[tex](g \circ \: h)(x) = 2({x}^{2} + 4)[/tex]
[tex](g \circ \: h)(x) = 2{x}^{2} + 8[/tex]
We substitute
[tex]x = 0[/tex]
to obtain,
[tex](g \circ \: h)(0) = 2({0})^{2} + 8[/tex]
This will simplify to,
[tex](g \circ \: h)(0) = 8[/tex]
[tex](g \circ \: h)(0) = 8[/tex]
EXPLANATION
The given function
[tex]g(x) = 2x[/tex]
[tex]h(x) = {x}^{2} + 4[/tex]
We want to find the composition of the function,
[tex](g \circ \: h)(x) = g(h(x))[/tex]
[tex](g \circ \: h)(x) = 2({x}^{2} + 4)[/tex]
[tex](g \circ \: h)(x) = 2{x}^{2} + 8[/tex]
We substitute
[tex]x = 0[/tex]
to obtain,
[tex](g \circ \: h)(0) = 2({0})^{2} + 8[/tex]
This will simplify to,
[tex](g \circ \: h)(0) = 8[/tex]