Answer:
The area of the floor is [tex]908.5\ ft^{2}[/tex]
Step-by-step explanation:
we know that
The area of the floor is equal to the area of rectangle plus the area of triangle
Step 1
Find the area of the rectangle
The area of rectangle is equal to
[tex]A=LW[/tex]
we have
[tex]L=38\ ft[/tex]
[tex]W=20\ ft[/tex]
substitute
[tex]A=38*20=760\ ft^{2}[/tex]
Step 2
Find the area of triangle
The area of triangle is equal to
[tex]A=\frac{1}{2}bh[/tex]
we have
[tex]b=38-5=33\ ft[/tex]
[tex]h=29-20=9\ ft[/tex]
substitute
[tex]A=\frac{1}{2}(33)(9)=148.5\ ft^{2}[/tex]
Step 3
Find the area of the floor
[tex]760\ ft^{2}+148.5\ ft^{2}=908.5\ ft^{2}[/tex]