Respuesta :

The standard form for the equation of a circle is :

 (x−h)^2+(y−k)^2=r2 ----------- EQ(1)
 where handk are the x and y coordinates of the center of the circle and r is the radius.
 The center of the circle is the midpoint of the diameter.

 So the midpoint of the diameter with endpoints at (7,-4)and(1,-10) is :

 ((7+(1))/2,(-4+(-10))/2)=(4,-7)

 So the point (4,-7) is the center of the circle.

  Now, use the distance formula to find the radius of the circle:

  r^2=(7−(4))^2+(-4−(-7))^2=9+9=18

 ⇒r=√18

 Subtituting h=4, k=-7 and r=√18 into EQ(1) gives :

 (x-4)^2+(y+7)^2=18