Respuesta :

I think that would be  an  = an-1 *  1/2    where an = nth term, and an-1 = previous term. 

Answer:

[tex]a_{n}=\frac{a_{n-1}}{2}[/tex]

Step-by-step explanation:

Let's look a the sequence:

[tex]3, \frac{3}{2} ,\frac{3}{4} ,\frac{3}{8}[/tex]

we can see that

[tex]\frac{3}{2}=3*\frac{1}{2}[/tex]

and

[tex]\frac{3}{4} =\frac{3}{2}*\frac{1}{2}[/tex]

and

[tex]\frac{3}{8}=\frac{3}{4} *\frac{1}{2}[/tex]

so each next number is equal to the previous number multiplied by [tex]\frac{1}{2}[/tex] or, in other other words, is the previous number divided by 2.

So the recursive formula must be:

[tex]a_{n}=\frac{a_{n-1}}{2}[/tex]

where [tex]a_{n}[/tex] is a number in the sequence, and [tex]a_{n-1}[/tex] is the immediate previous number.