Respuesta :

You have sqrt(8), sqrt(18), and sqrt(2).
You need to simplify the radicals.
sqrt(2) is already simplified.
For both sqrt(8) and sqrt(18), you need to factor out the greatest perfect square.

8 = 4 * 2
You can take the square root of 4 and put it outside the root.

18 = 9 * 2
You can take the square root of 9 and put it outside the root.

[tex] 5 \sqrt{8} - \sqrt{18} -2 \sqrt{2} = [/tex]

[tex]= 5 \sqrt{4 \times 2} - \sqrt{9 \times 2} -2 \sqrt{2} [/tex]

[tex]= 5 \times 2\sqrt{2} - 3 \sqrt{2} -2 \sqrt{2} [/tex]

[tex]= 10\sqrt{2} - 3 \sqrt{2} -2 \sqrt{2} [/tex]

[tex]= 5\sqrt{2} [/tex]

Answer:

[tex]5\sqrt2[/tex]

Step-by-step explanation:

We are given that an expression

[tex]5\sqrt8-\sqrt{18}-2\sqrt2[/tex]

We have to simplify the given expression.

Factorize each term

[tex]5\sqrt{2\times 2\times 2}-\sqrt{2\times 3\times 3}-2\sqrt2[/tex]

[tex]5\times 2\sqrt2-3\sqrt2-2\sqrt2[/tex]

[tex]10\sqrt2-3\sqrt2-2\sqrt2[/tex]

By simplification

[tex]10\sqrt2-5\sqrt2[/tex]

Taking common[tex]\sqrt2[/tex] form each term

[tex](10-5)\sqrt2[/tex]

[tex]5\sqrt2[/tex]  ( by simplification)

Hence, [tex]5\sqrt8-\sqrt{18}-2\sqrt2=5\sqrt2[/tex]