Respuesta :

the recursive rule is : a1=8; an=34an-1. The explicit rule for this sequence is 8(3/4)^n-1.

Your answer is: 8(3/4)^n-1 

Have an amazing day mate!

---_---_---_---_---_---_---_---_---
ANSWER

The explicit rule is,

[tex]a_n=8({ \frac{3}{4} })^{n - 1} [/tex]


EXPLANATION


The recursive rule for the sequence is given as,


[tex]a_n= \frac{3}{4} a_{n-1}[/tex]


Where,

[tex]a_1=8
[/tex]


Let us find the next term so that we can use it to find the common ratio.



We put
[tex]n = 2[/tex]
into the formula to obtain,


[tex]a_2= \frac{3}{4} a_{2-1}[/tex]



This implies that,

[tex]a_2= \frac{3}{4} a_{1}[/tex]


This will give us


[tex]a_2= \frac{3}{4} (8)[/tex]



[tex]a_2= \frac{3}{1} (2)[/tex]




[tex]a_2= 3 \times 2[/tex]


[tex]a_2= 6[/tex]


The common ratio is


[tex]r = \frac{a_2}{a_1} [/tex]

[tex]r = \frac{6}{8} [/tex]
This reduces to


[tex]r = \frac{3}{4} [/tex]

The explicit rule of the sequence is given by



[tex]a_n=a_1 {r}^{n - 1} [/tex]



We substitute the values to obtain,



[tex]a_n=8({ \frac{3}{4} })^{n - 1} [/tex]