Respuesta :

64x2-25y2 Final result : (8x + 5y) • (8x - 5y) Reformatting the input :

Changes made to your input should not affect the solution:

 (1): "y2"   was replaced by   "y^2".  1 more similar replacement(s).

Step by step solution: Step 1: Equation at the end of step  1  : (64 • (x2)) - 52y2 Step 2: Equation at the end of step 2: 26x2 - 52y2 Step 3: Trying to factor as a Difference of Squares :

 3.1      Factoring:  64x2-25y2 

Theory: A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 - AB + AB - B2 = 
         A2 - B2

Note: AB = BA is the commutative property of multiplication. 

Note: AB + AB equals zero and is therefore eliminated from the expression.

Check: 64  is the square of  8 
Check: 25 is the square of 5
Check: x2  is the square of  x1 

Check: y2  is the square of  y1 

Factorization is :       (8x + 5y)  •  (8x - 5y) 

Final result : (8x + 5y) • (8x - 5y)