Respuesta :

The Answer is B i just took the test on ingenuity.

Answer:

Option B is Correct.

Step-by-step explanation:

Given: [tex]y\,=\,3\,cos\,(2(x+\frac{\pi}{2}))-2[/tex]

To find: Equivalent Expression.

We use Following functions:

[tex]cos\,(\pi+x)=\,-cos\,x\:,\:cos\,(\frac{\pi}{2}+x)=\,-sin\,x\:\:and\:\:sin\,(\frac{\pi}{2}+x)=cos\,x[/tex]

First we simply the given expression,

[tex]y\,=\,3\,cos\,(2(x+\frac{\pi}{2}))-2[/tex]

[tex]y\,=\,3\,cos\,(2x+2\frac{\pi}{2}))-2[/tex]

[tex]y\,=\,3\,cos\,(2x+\pi)-2[/tex]

[tex]y\,=\,3\,cos\,(\pi+2x)-2[/tex]

[tex]y\,=\,3\,(-cos\,2x)-2[/tex]     ( using above mentioned result )

[tex]y\,=\,-3\,cos\,2x-2[/tex] ............................(1)

Option A:

[tex]y\,=\,3\,sin\,(2(x+\frac{\pi}{4}))-2[/tex]

[tex]y\,=\,3\,sin\,(2x+2\frac{\pi}{4}))-2[/tex]

[tex]y\,=\,3\,sin\,(2x+\frac{\pi}{2})-2[/tex]

[tex]y\,=\,3\,sin\,(\frac{\pi}{2}+2x)-2[/tex]

[tex]y\,=\,3\,cos\,2x-2[/tex]     ( using above mentioned result )

Since, it is not equal to (1)

Therefore, It is Not correct Option.

Option B:

[tex]y\,=\,-3\,sin\,(2(x+\frac{\pi}{4}))-2[/tex]

[tex]y\,=\,-3\,sin\,(2x+2\frac{\pi}{4}))-2[/tex]

[tex]y\,=\,-3\,sin\,(2x+\frac{\pi}{2})-2[/tex]

[tex]y\,=\,-3\,sin\,(\frac{\pi}{2}+2x)-2[/tex]

[tex]y\,=\,-3\,cos\,2x-2[/tex]     ( using above mentioned result )

Since, it is equal to (1)

Therefore, It is Correct Option.

Option C:

[tex]y\,=\,3\,cos\,(2(x+\frac{\pi}{4}))-2[/tex]

[tex]y\,=\,3\,cos\,(2x+2\frac{\pi}{4}))-2[/tex]

[tex]y\,=\,3\,cos\,(2x+\frac{\pi}{2})-2[/tex]

[tex]y\,=\,3\,cos\,(\frac{\pi}{2}+2x)-2[/tex]

[tex]y\,=\,3\,(-sin\,2x)-2[/tex]     ( using above mentioned result )

[tex]y\,=\,-3\,sin\,2x-2[/tex]

Since, it is not equal to (1)

Therefore, It is Not correct Option.

Option D:

[tex]y\,=\,-3\,cos\,(2(x+\frac{\pi}{2}))-2[/tex]

[tex]y\,=\,-3\,cos\,(2x+2\frac{\pi}{2}))-2[/tex]

[tex]y\,=\,-3\,cos\,(2x+\pi)-2[/tex]

[tex]y\,=\,-3\,cos\,(\pi+2x)-2[/tex]

[tex]y\,=\,-3\,(-cos\,2x)-2[/tex]    ( using above mentioned result )

[tex]y\,=\,3\,cos\,2x-2[/tex]

Since, it is not equal to (1)

Therefore, It is Not correct Option.

Therefore, Option B is Correct.