Worth 20 points if answered correctly.

Given: △ABC, BD¯¯¯¯¯ bisects ∠ABC

Prove: AD/DC = AB/BC

Statements Reasons
1 ​ △ABC​ , BD¯¯¯¯¯ bisects ∠ABC Given
2 ​ ∠AEB≅∠DBC ​ (Section A.) ________
3 ​ ∠DBC≅∠ABD ​ Definition of bisector
4 ∠AEB≅∠ABD Transitive Property
5 ∠ABD≅∠BAE Alternate Interior Angles Theorem
6 ∠AEB≅∠BAE (Section B.) ________
7 ​AB = EB​ Converse of Isosceles Base Angle Theorem
8 ​ AD/DC = EB/BC ​ (Section C.) ________
9 ​ AD/DC = AB/BC ​ Substitution Property

Answer options:
1. Transitive Property
2. Corresponding Angles Theorem
3. Triangle Proportionality Theorem
4. Alternate Exterior Angles Theorem
5. Angle Addition Postulate

Note: Pick the answer number for which section it belongs to.

Worth 20 points if answered correctly Given ABC BD bisects ABC Prove ADDC ABBC Statements Reasons 1 ABC BD bisects ABC Given 2 AEBDBC Section A 3 DBCABD Definit class=

Respuesta :

Given: △ABC,  segment BD bisects ∠ABC

Statements Reasons

1 ​ △ABC​ , segment BD bisects ∠ABC (Given )

2 ​ ∠AEB≅∠DBC ​ ----- seg (AE) ║seg DB so by Corresponding Angles Theorem    

3 ​ ∠DBC≅∠ABD ​----- Definition of bisector

4 ∠AEB≅∠ABD  -------Transitive Property

5 ∠ABD≅∠BAE --------Alternate Interior Angles Theorem

6 ∠AEB≅∠BAE  ---------   Transitive Property  (If a = b and b = c then a =c)

7 ​AB = EB​ --------- Converse of Isosceles Base Angle Theorem

8 ​ AD/DC = EB/BC ​ ----------Triangle Proportionality Theorem

9 ​ AD/DC = AB/BC ​------- Substitution Property


Answer:

See picture below. Hope this helps :)

Step-by-step explanation:

Ver imagen PlzjustcallmeJay