Respuesta :

If you're familiar with synthetic division, but not the extended form (which allows you easily compute the quotient/remainder when dividing a polynomial by another polynomial of degree greater than 1), then you can perform two steps of SD.

Instead of dividing by [tex]x^2+3x[/tex], first divide by [tex]x[/tex], then by [tex]x+3[/tex] (since [tex]x^2+3x=x(x+3)[/tex]). So we have

0   |   1    4    2    1    4
...  |         0    0    0    0
= = = = = = = = = = = =
...  |   1    4    2    1    4

which translates to

[tex]\dfrac{x^4+4x^3+2x^2+x+4}x=x^3+4x^2+2x+1+\dfrac4x[/tex]

Ignoring the remainder term for now, the next round of SD yields

-3   |   1    4    2    1
...   |        -3   -3    3   
= = = = = = = = = =
...   |   1    1   -1    4

which translates to

[tex]\dfrac{x^3+4x^2+2x+1}{x+3}=x^2+x-1+\dfrac4{x+3}[/tex]

Now, putting everything together, we have

[tex]\dfrac{x^4+4x^3+2x^2+x+4}{x^2+3x}=\dfrac{x^3+4x^2+2x+1+\frac4x}{x+3}[/tex]
[tex]=x^2+x-1+\dfrac4{x+3}+\dfrac4{x(x+3)}[/tex]
[tex]=x^2+x-1+\dfrac{4x+4}{x^2+3x}[/tex]

which is to say the remainder upon dividing [tex]x^4+4x^3+2x^2+x+4[/tex] by [tex]x^2+3x[/tex] is [tex]4x+4[/tex].