What is the area of the triangle in the diagram?

Answer:
(B)
Step-by-step explanation:
Given: A triangle whose coordinates are (0,0), [tex](x_{1},y_{1})[/tex] and [tex](x_{2},y_{1})[/tex].
To find: The area of the triangle.
Solution: We know that Area of triangle=[tex]\frac{1}{2}{\times}base{\times}height[/tex].
Now, Base=[tex]\sqrt{(x_{2}-x_{1})^{2}+(y_{1}-y_{1})^{2}}[/tex]
Base=[tex](x_{2}-x_{1})[/tex]
And height=[tex]\sqrt{(0-0)^2+(y_{1}-0)^2}[/tex]
Height= [tex]y_{1}[/tex]
Therefore, area of triangle= [tex]\frac{1}{2}{\times}(x_{2}-x_{1})}{\times}y_{1}[/tex]
Area of triangle=[tex]\frac{1}{2}y_{1}(x_{2}-x_{1})}[/tex]