Respuesta :
The answer is D. Think of the Pythagorean Theorem which states that a^2 + b^2 = c^2. The Pythagorean Identities used in trigonometry are the angle version which can be used to simplify expressions.
Answer:
C is correct
Step-by-step explanation:
We need to choose Pythagoreon Identity
[tex](\sin x-\cos x)^2=1-2\sin x\cos x[/tex]
[tex](a-b)^2=a^2+b^2-2ab[/tex]
[tex]\sin^2 x+\cos^2 x-2\sin x\cos x=1-2\sin x\cos x[/tex]
Cancel line term from both sides
[tex]\sin^2x+\cos^2x=1[/tex]
As we know,
[tex]\sin x=\dfrac{P}{H}[/tex]
[tex]\cos x=\dfrac{B}{H}[/tex]
Where,
[tex]P\rightarrow \text{ Perpendicular of Right triangle}[/tex]
[tex]B\rightarrow \text{ Base of Right triangle}[/tex]
[tex]H\rightarrow \text{ Hypotenuse of Right triangle}[/tex]
[tex]\sin^2x+\cos^2x=1[/tex]
[tex]\dfrac{P^2}{H^2}+\dfrac{B^2}{H^2}=1[/tex]
[tex]P^2+B^2=H^2[/tex]
This is pythagorean Identity
Hence, [tex](\sin x-\cos x)^2=1-2\sin x\cos x[/tex] this is pythagorean identity