Respuesta :
A = P(1 + r/n)^(nt)
A = 7300(1 + 0.07/2)^(2)(3) = 7300(1.035)^6 = 7300(1.2293) = $8973.56
A = 2100(1 + 0.094/4)^(4)(2) = 2100(1.0235)^8 = 2100(1.2042) = $2528.84
A = 7300(1 + 0.07/2)^(2)(3) = 7300(1.035)^6 = 7300(1.2293) = $8973.56
A = 2100(1 + 0.094/4)^(4)(2) = 2100(1.0235)^8 = 2100(1.2042) = $2528.84
[tex]\bf ~~~~~~ \textit{Compound Interest Earned Amount}
\\\\
A=P\left(1+\frac{r}{n}\right)^{nt}
\quad
\begin{cases}
A=\textit{accumulated amount}\\
P=\textit{original amount deposited}\to &\$7300\\
r=rate\to 7\%\to \frac{7}{100}\to &0.07\\
n=
\begin{array}{llll}
\textit{times it compounds per year}\\
\textit{semi-annual, thus twice}
\end{array}\to &2\\
t=years\to &3
\end{cases}
\\\\\\
A=7300\left(1+\frac{0.07}{2}\right)^{2\cdot 3}\implies A=7300(1.035)^6[/tex]
and surely you know how much that is.
and surely you know how much that is.