Respuesta :

Answer:- a.The given expression is equivalent to  [tex]\frac{x^{10}y^{14}}{729}[/tex]



Given expression:- [tex][\frac{(3xy^{-5})^3}{(x^{-2}y^2)^{-4}}]^{-2}[/tex]

[tex]=[\frac{(3)^3x^3y^{-5\times3}}{x^{-2\times-4}y^{2\times-4}}]^{-2}.........(a^m)^n=a^{mn}[/tex]

[tex]=[\frac{27x^3y^{-15}}{x^8y^{-8}}]^{-2}[/tex]

[tex]=[27x^{3-8}y^{-15-(-8)}]^{-2}............\frac{a^m}{a^n}=a^{m-n}[/tex]

[tex]=[27x^{-5}y^{-7}]^{-2}=(27)^{-2}(x^{-5})^{-2}(y^{-7})^{-2}.........(a^m)^n=a^{mn}[/tex]

[tex]=\frac{1}{(27)^2}(x^{10}y^{14})=\frac{x^{10}y^{14}}{729}[/tex]

Thus a. is the right answer.


Answer: A

Step-by-step explanation:

built different