dannies
contestada

What are all of the real roots of the following polynomial? f(x) = x4 - 13x2 + 36


-3, -2, 2, and 3
-3 and 3
-2 and 2
-3, -1, 1, and 3

Respuesta :

x^4 - 13x^2  + 36 = 0

(x^2 - 9)(x^2 - 4) = 0

x^2 - 9  = 0  gives x = 3, -3

x^2 - 4  = 0,  gives x = 2, -2.

Answer is A.
ANSWER

A. -3, -2, 2, and 3

EXPLANATION

The given polynomial function is,

[tex]f(x) = {x}^{4} - 13 {x}^{2} + 36[/tex]

To find the real roots, we equate the function to zero to obtain;

[tex]{x}^{4} - 13 {x}^{2} + 36 = 0[/tex]

We can solve this equation as a quadratic equation in
[tex] {x}^{2}.[/tex]

Thus we rewrite the equation as,

[tex]({x}^{2})^{2} - 13 {x}^{2} + 36 = 0[/tex]

We split the middle term to get,

[tex]({x}^{2})^{2} - 9 {x}^{2} - 4 {x}^{2} + 36 = 0.[/tex]

We factor to get,

[tex] {x}^{2} ( {x}^{2} - 9) - 4( {x}^{2} - 9) = 0[/tex]

We factor to get,

[tex]( {x}^{2} - 9)( {x}^{2} - 4) = 0[/tex]

Either

[tex] {x}^{2} - 9 = 0[/tex]
or

[tex] {x}^{2} - 4 = 0[/tex]

[tex]x = \pm \sqrt{9} \: or \: x = \pm \sqrt{4} [/tex]
[tex]x = \pm3 \: or \: x = \pm2[/tex]

[tex]x=-3,-2,2,3[/tex]

The correct answer is A