What exponential function is best fit for the data table?

x f(x)
3 10
4 16
5 28

A) f(x) = 3(2)x − 2 + 4

B) f(x) = 3(2)x − 2 − 4

C) f(x) = 1/3(2)x − 2 + 4

D) f(x) = 1/3(2)x − 2 − 4

Respuesta :

f(x) = 3(2)^(x − 2) + 4

Answer:

Hence, the exponential function that best fits the data is:

[tex]f(x)=3\times 2^{x-2}+4[/tex]  (Option A)

Step-by-step explanation:

We are given a set of values as:

x        f(x)

3        10

4        16

5        28

so we will put the value of x=3 in each of the given options and check which function gives the value 10.

i.e. at x=3 which function f(x)=10.

B)

[tex]f(x)=3\times 2^{x-2}-4[/tex]

when x=3.

[tex]f(3)=3\times 2^{3-2}-4\\\\f(3)=3\times 2-4\\\\f(3)=6-4\\\\f(3)=2\neq 10[/tex]

Hence, option B is incorrect.

C)

[tex]f(x)=\dfrac{1}{3}\times 2^{x-2}+4[/tex]

when x=3

[tex]f(3)=\dfrac{1}{3}\times 2^{3-2}+4\\\\f(3)=\dfrac{1}{3}\times 2+4\\\\f(3)=\dfrac{14}{3}\neq 10[/tex]

Hence, option C is incorrect.

D)

[tex]f(x)=\dfrac{1}{3}\times 2^{x-2}-4[/tex]

when x=3

[tex]f(3)=\dfrac{1}{3}\times 2^{3-2}-4\\\\f(3)=\dfrac{1}{3}\times 2-4\\\\f(3)=\dfrac{-10}{3}\neq 10[/tex]

Hence, option D is incorrect.

A)

[tex]f(x)=3\times 2^{x-2}+4[/tex]

when x=3.

[tex]f(3)=3\times 2^{3-2}+4\\\\f(3)=3\times 2+4\\\\f(3)=6+4\\\\f(3)=10[/tex]

similarly A option holds for other values of x as well.

Hence, option A is correct.

Hence, the exponential function that best fits the data is:

[tex]f(x)=3\times 2^{x-2}+4[/tex]