Respuesta :
Answer:
14.8 cubic units
Step-by-step explanation:
The volume of the right pyramid can be calculated using formula
[tex]V_{pyramid}=\dfrac{1}{3}\cdot A_{base}\cdot height.[/tex]
You are given
[tex]A_{base}=7.4\ un^2.\\ \\height=6\ un.[/tex]
Then
[tex]V_{pyramid}=\dfrac{1}{3}\cdot 7.4\cdot 6=2\cdot 7.4=14.8\ un^3.[/tex]
Answer:
[tex]14.8\text{ Units}^3[/tex]
Step-by-step explanation:
We have been given that the base area of a right pyramid with hexagonal base is 7.4 square units. The pyramid has a height of 6 units.
To find the volume of the given pyramid we will use formula:
[tex]\text{Volume of hexagonal pyramid}=\text{ Base area}\times \frac{\text{Height}}{3}[/tex]
[tex]\text{Volume of hexagonal pyramid}=7.4\text{ Units}^2\times \frac{\text{6 units}}{3}[/tex]
[tex]\text{Volume of hexagonal pyramid}=7.4\text{ Units}^2\times \text{2 units}[/tex]
[tex]\text{Volume of hexagonal pyramid}=14.8\text{ Units}^3[/tex]
Therefore, the volume of given hexagonal pyramid is 14.8 cubic units.