Respuesta :

Answer:

Using distance(D) formula for two points is given by:

[tex]D = \sqrt{(x_1-x_2)^2+(y_1-y_2)^2}[/tex]

From the given figure:

The coordinates of the quadrilateral ABCD are:

A(-3, 2), B(4, 2), C(3, -3) and D(-3, -3)

For A(-3, 2) and B(4, 2)

using formula we have;

[tex]AB= \sqrt{(-3-4)^2+(2-2)^2}[/tex]

⇒[tex]AB= \sqrt{(-7)^2+(0)^2}[/tex]

⇒[tex]AB= \sqrt{49} =7[/tex] units

Similarly;

For B(4, 2) and C(3, -3)

[tex]BC= \sqrt{(4-3)^2+(2-(-3))^2}[/tex]

⇒[tex]BC= \sqrt{(1)^2+(5)^2}[/tex]

⇒[tex]BC= \sqrt{1+25}=\sqrt{26}[/tex] units.

For C(3, -3) and D(-3, -3)

[tex]CD= \sqrt{(3-(-3))^2+(-3-(-3))^2}[/tex]

⇒[tex]CD= \sqrt{(6)^2+(0)^2}[/tex]

⇒[tex]CD= \sqrt{36+0}=\sqrt{36}=6[/tex] units.

For A(-3, 2) and D(-3, -3)

[tex]AD= \sqrt{(-3-(-3))^2+(2-(-3))^2}[/tex]

⇒[tex]AD= \sqrt{0+25}=\sqrt{25}=5[/tex] units.

Perimeter is equal to the sum of all the sides of quadrilateral ABCD:

Perimeter = AB+BC+CD+AD

then;

[tex]\text{Perimeter} = 7+\sqrt{26}+6+5 = 18+\sqrt{26}[/tex] units

Therefore, the perimeter of quadrilateral ABCD is, [tex] 18+\sqrt{26}[/tex] units

Answer:

18 + √26 units

Step-by-step explanation: