Respuesta :

Space

Answer:

[tex]\displaystyle \frac{dy}{dx} = 1[/tex]

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:                                                         [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle y = \frac{2x + x^2}{x}[/tex]

Step 2: Differentiate

  1. Factor:                                                                                                           [tex]\displaystyle y = \frac{x(2 + x)}{x}[/tex]
  2. Simplify:                                                                                                         [tex]\displaystyle y = 2 + x[/tex]
  3. Derivative Property [Addition/Subtraction]:                                                 [tex]\displaystyle y' = \frac{d}{dx}[2] + \frac{d}{dx}[x][/tex]
  4. Basic Power Rule:                                                                                         [tex]\displaystyle y' = 1[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)  

Unit: Differentiation