Respuesta :
Answer:
Option (c) is correct.
[tex](f + g)(x)=x^2-x+6[/tex]
Step-by-step explanation:
Given : [tex]f(x)=x^2+1\\\\g(x)=5-x[/tex]
We have to find (f + g)(x)
Using property of addition of functions
(f + g)(x) = f(x) + g(x)
Substitute , we get,
[tex](f + g)(x)= f(x)+g(x)\\\\(f + g)(x)= x^2+1+5-x\\\\[/tex]
On Simplifying further , we get,
[tex](f + g)(x)=x^2-x+6[/tex]
Thus, option (c) is correct.
[tex](f + g)(x)=x^2-x+6[/tex]
Answer:
Option C is correct
[tex]x^2-x+6[/tex]
Step-by-step explanation:
Given the functions:
[tex]f(x)=x^2+1[/tex]
[tex]g(x) = 5-x[/tex]
We have to find (f + g)(x).
(f + g)(x) = f(x)+g(x)
Substitute the values we have;
[tex](f+g)(x) = x^2+1+5-x[/tex]
⇒[tex](f+g)(x) = x^2-x+6[/tex]
Therefore, the value of (f + g)(x) is, [tex]x^2-x+6[/tex]