Let the random variable x have a discrete uniform distribution on the integers 8 ≤ x ≤ 11. determine the mean, μ, and variance, σ2, of x. round your answers to two decimal places (e.g. 98.76).

Respuesta :

[tex]\mathbb P(X=x)=\dfrac14[/tex] for each [tex]x\in\{8,9,10,11\}[/tex]. Now

[tex]\mu=\mathbb E(X)[/tex]
[tex]\mu=\displaystyle\sum_{x=8}^{11}x\,\mathbb P(X=x)[/tex]
[tex]\mu=\dfrac{8+9+10+11}4=9.50[/tex]

[tex]\sigma^2=\mathbb V(X)=\mathbb E(X^2)-\mathbb E(X)^2[/tex]
[tex]\sigma^2=\displaystyle\sum_{x=8}^{x=11}x^2\,\mathbb P(X=x)-9.50^2[/tex]
[tex]\sigma^2=\dfrac{64+81+100+121}4-9.50^2=1.25[/tex]