Answer:
(D)
Step-by-step explanation:
The given equation is:
[tex]\sqrt[3]{x^2-12}=\sqrt[3]{4x}[/tex]
Cubing on both the sides, we get
[tex]x^2-12=4x[/tex]
[tex]x^2-4x-12=0[/tex]
[tex](x-6)(x+2)=0[/tex]
therefore, the solutions are:
[tex]x=6[/tex] and [tex]x=-2[/tex]
Substitute x=6 in the given equation, we have
[tex](6)^2-12=4(6)[/tex]
[tex]36-12=24[/tex]
[tex]24=24[/tex]
which is true, thus x=6 is a true solution.
Put x=-2 in the given equation, we have
[tex](-2)^2-12=4(-2)[/tex]
[tex]4-12=-8[/tex]
[tex]-8=-8[/tex]
which is true, thus x=-2 is a true solution.
Therefore, Both x = –2 and x = 6 are true solutions.