ANSWER ASAPPPPPP
Find the length and width of a rectangle with an area of 2x2 + x - 3.

A) l = 2x + 3; w = x + 1
B) l = 2x + 3; w = x - 1
C) l = 3x + 2; w = x - 1

Respuesta :

The leading coefficient of one of the factors will be 2; the product of the constants in the factors will be -3. The only choice matching both these requirements is
.. selection B.

Answer:

Option B is correct

[tex]length (l) = 2x+3[/tex] ; [tex]width (w) = (x-1)[/tex]

Step-by-step explanation:

Given an area of rectangle in the form of equation:

Area of Rectangle = [tex]2x^2+x-3[/tex]

Formula for the Area of Rectangle: To find the Area of Rectangle in square unit,  we multiply the length by width, i.e,

Area of Rectangle (A) = [tex]length(l) \times width(w)[/tex]

Factorize the quadratic equation:

[tex]2x^2+x-3[/tex]

⇒ [tex](2x+3)( x-1)[/tex]

Since, Area of rectangle =  [tex]2x^2+x-3 = (2x+3) \times (x-1)[/tex]

or

[tex]l \times w= (2x+3) \times (x-1)[/tex]

then,  either [tex]l[/tex] = (2x+3) , [tex]w[/tex] = (x-1) or [tex]l = (x-1)[/tex] ,  [tex]w[/tex]= (2x+3)

The only options we have; [tex]length (l)[/tex] = (2x+3) and width (w) = (x-1)