Respuesta :
ANSWER
[tex]y=8(x^2+4x+4)+17-32[/tex]
EXPLANATION
We were given [tex]y=8x^2+32x+17[/tex].
To convert to vertex form, We factor out the leading coefficient which is 8.
[tex]y=8(x^2+4x)+17[/tex]
Next, we form a perfect square by adding and subtracting [tex]8(2)^2[/tex] to get;
[tex]y=8(x^2+4x)+8(4)+17-8(4)[/tex]
We factor and combine the first two terms with a common factor of 8 to get,
[tex]y=8(x^2+4x+4)+17-8(4)^2[/tex]
This simplifies to
[tex]y=8(x^2+4x+4)+17-32[/tex]
[tex]y=8(x^2+4x+4)+17-32[/tex]
EXPLANATION
We were given [tex]y=8x^2+32x+17[/tex].
To convert to vertex form, We factor out the leading coefficient which is 8.
[tex]y=8(x^2+4x)+17[/tex]
Next, we form a perfect square by adding and subtracting [tex]8(2)^2[/tex] to get;
[tex]y=8(x^2+4x)+8(4)+17-8(4)[/tex]
We factor and combine the first two terms with a common factor of 8 to get,
[tex]y=8(x^2+4x+4)+17-8(4)^2[/tex]
This simplifies to
[tex]y=8(x^2+4x+4)+17-32[/tex]