The diameter of the larger circle is 12.5 cm.
The diameter of the smaller circle is 3.5 cm.

What is the approximate area of the larger circle?

Respuesta :

The answer is:  " 122.65625 cm² " ; or, write as:  " 122 [tex] \frac{21}{32} [/tex]  cm² " .
________________________________________________________
Note: 
________________________________________________________
The area, "A", of a circle:

 A = [tex] \pi [/tex] * r² ;

           in which:  A = area of the circle; 

                            [tex] \pi [/tex] = 3.14 ; 

                            r = radius ;

To calculate radius, "r" = diameter/2 = 12.5 cm/2 = 6.25 cm .

                           r = 6.25 cm ;

So, to calculate the area, "A" of the circle:

A = [tex] \pi [/tex] * r²  ;

Plug in the values to find the Area, "A" of the circle:

A = 3.14 * (6.25 cm)²  ; 

A = 3.14 * (6.25)² * cm² ;

A = 3.14 *  39.0625 * cm² ;   Note that "39.0625" = "[tex] \frac{1}{16} [/tex]" .

A = 122.65625 cm²  ; or, write as:  " 122 [tex] \frac{21}{32} [/tex]  cm² " .
___________________________________________________________