Respuesta :
[tex]\bf ~~~~~~ \textit{Compound Interest Earned Amount}
\\\\
A=P\left(1+\frac{r}{n}\right)^{nt}
\quad
\begin{cases}
A=\textit{accumulated amount}\\
P=\textit{original amount deposited}\to &\$3000\\
r=rate\to 1.5\%\to \frac{1.5}{100}\to &0.015\\
n=
\begin{array}{llll}
\textit{times it compounds per year}\\
\textit{annually, thus once}
\end{array}\to &1\\
t=years\to &5
\end{cases}
\\\\\\
A=3000\left(1+\frac{0.015}{1}\right)^{1\cdot 5}\implies A=3000(1.015)^5\implies A\approx 3231.852[/tex]
Answer:
The value of the account after 5 years is 3231,85
Step-by-step explanation:
The formula of interest is A=P (1+r)ⁿ
A=Final amount
P= Principal ( deposit invested)
r= interest rate
n= time
So, in this case
P=$3,000
r= 1.5% or 0,015
n= 5
Replacing
A=3000(1+0,015)^5
A=3231,85