Respuesta :

Answer:  
_____________________________________________________________
r = [tex]( \frac{a}{4 \pi })^ \frac{1}{2} [/tex] " ;
 
or; write as:  " r = [tex] \sqrt{ \frac{a}{4 \pi } } [/tex] " ; 

or; write as:  " r = [tex] \frac{ \sqrt{a} }{ \sqrt{4 \pi } } [/tex] " .
________________________________________________________
Explanation:
________________________________________________________
Note the formula for the surface area, "a" ; of a sphere:

→  " a = 4 π r² " ;

→  Let us rearrange the equation to isolate "r" on one side of the equation: 

→  Given:  "  a = 4 π r² " ; 

↔  4 π r² = a ; 

Divide EACH side of the equation by " [4 * π] " ;

→    {4 π r²} / [4 * π]  = a / [4 * π] ;

to get:

→  r² =  { [tex] \frac{a}{4 \pi } [/tex] } ;

Now, take the POSITIVE square root of each side of the equation; 
 to isolate "r" on one side of the equation; 

→  √(r²)  = √ { [tex] \frac{a}{4 \pi } [/tex] } ;

                      " r = [tex]( \frac{a}{4 \pi })^ \frac{1}{2} [/tex] " ;
 
or; write as:  " r = [tex] \sqrt{ \frac{a}{4 \pi } } [/tex] " ; 

or; write as:  " r = [tex] \frac{ \sqrt{a} }{ \sqrt{4 \pi } } [/tex] " .
___________________________________________________________