contestada

A pendulum is formed by taking a 2.0 kg mass and hanging it from the ceiling using a steel wire with a diameter of 1.1 mm. it is observed that the wire stretches by 0.05 mm under the weight of the mass. what is the period of oscillation of the pendulum?

Respuesta :

Answer: 1.39 s

Explanation:

We can solve this problem with the following equations:

[tex]\frac{\Delta l}{l_{o}}=\frac{F}{AY}[/tex] (1)

[tex]T=2 \pi \sqrt{\frac{l_{o}}{g}}[/tex] (2)

Where:

[tex]\Delta l=0.05 mm=5(10)^{-5} m[/tex] is the length the steel wire streches (taking into account 1mm=0.001 m)

[tex]l_{o}[/tex] is the length of the steel wire before being streched

[tex]F=mg=(2 kg)(9.8 m/s^{2})=19.6 N[/tex] is the force due gravity (the weight) acting on the pendulum with mass [tex]m=2 kg[/tex]

[tex]A[/tex] is the transversal area of the wire

[tex]Y=2(10)^{11} Pa[/tex] is the Young modulus for steel

[tex]T[/tex] is the period of the pendulum

[tex]g=9.8 m/s^{2}[/tex] is the acceleration due gravity

Knowing this, let's begin by finding [tex]A[/tex]:

[tex]A=\pi r^{2}=\pi (\frac{d}{2})^{2}=\pi \frac{d^{2}}{4}[/tex] (3)

Where [tex]d=1.1 mm=0.0011 m[/tex] is the diameter of the wire

[tex]A=\pi \frac{(0.0011 m)^{2}}{4}[/tex] (4)

[tex]A=9.5(10)^{-7}m^{2}[/tex] (5)

Knowing this area we can isolate [tex]l_{o}[/tex] from (1):

[tex]l_{o}=\frac{\Delta l AY}{F}[/tex] (6)

And substitute [tex]l_{o}[/tex] in (2):

[tex]T=2 \pi \sqrt{\frac{\frac{\Delta l AY}{F}}{g}}[/tex] (7)

[tex]T=2 \pi \sqrt{\frac{\frac{(5(10)^{-5} m)(9.5(10)^{-7}m^{2})(2(10)^{11} Pa)}{2(10)^{11} Pa}}{9.8 m/s^{2}}}[/tex] (8)

Finally:

[tex]T=1.39 s[/tex]