Respuesta :
Answer:
Part C
Step-by-step explanation:
Part (i)
[tex]f(x)=\frac{x+6}{x-6}[/tex]
Let f(x)=y
[tex]y=\frac{x+6}{x-6}[/tex]
let us solve the above equation for x and replace y with x in the final result
y(x-6)=x+6
xy-6y=x+6
xy-x=6y+6
taking x and 6 out side the bracket
x(y-1)=6(y+1)
[tex]x=6\times \frac{y+1}{y-1}[/tex]
replacing x with y
[tex]y=6\times \frac{x+1}{x-1}[/tex]
Hence Inverse not equal to the original function
hence Not true
Part (ii)
[tex]f(x)=\frac{x+2}{x-2}[/tex]
Let f(x)=y
[tex]y=\frac{x+2}{x-2}[/tex]
let us solve the above equation for x and replace y with x in the final result
y(x-2)=x+2
xy-2y=x+2
xy-x=2y+2
taking x and 2 out side the bracket
x(y-1)=2(y+1)
[tex]x=2\times \frac{y+1}{y-1}[/tex]
replacing x with y
[tex]y=2\times \frac{x+1}{x-1}[/tex]
Hence Inverse not equal to the original function
hence Not true
Part (iii)
[tex]f(x)=\frac{x+1}{x-1}[/tex]
Let f(x)=y
[tex]y=\frac{x+1}{x-1}[/tex]
let us solve the above equation for x and replace y with x in the final result
y(x-1)=x+1
xy-y=x+1
xy-x=y+1
taking x and 1 out side the bracket
x(y-1)=1(y+1)
[tex]x= \frac{y+1}{y-1}[/tex]
replacing x with y
[tex]y= \frac{x+1}{x-1}[/tex]
Hence Inverse equal to the original function
hence true