After 8 years, what is the total amount of a compound interest investment of $25,000 at 3% interest, compounded quarterly?




$25,377.11

$25,759.92

$26,148.50

$31,752.78

Respuesta :

[tex]\bf ~~~~~~ \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\to &\$25000\\ r=rate\to 3\%\to \frac{3}{100}\to &0.03\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{quarterly, thus four} \end{array}\to &4\\ t=years\to &8 \end{cases} \\\\\\ A=25000\left(1+\frac{0.03}{4}\right)^{4\cdot 8}\implies A=25000(1.0075)^{32}[/tex]
Compound interest formula:
F=P(1+i)^n
P=present value (deposit) = 25000
i=interest per period (quarter) = 0.03/4
n=number of periods (quarter) = 8*4=32

So future value
F=25000(1+0.03/4)^32
= 31752.78