Respuesta :
[tex]\bf ~~~~~~ \textit{Compound Interest Earned Amount}
\\\\
A=P\left(1+\frac{r}{n}\right)^{nt}
\quad
\begin{cases}
A=\textit{accumulated amount}\\
P=\textit{original amount deposited}\to &\$25000\\
r=rate\to 3\%\to \frac{3}{100}\to &0.03\\
n=
\begin{array}{llll}
\textit{times it compounds per year}\\
\textit{quarterly, thus four}
\end{array}\to &4\\
t=years\to &8
\end{cases}
\\\\\\
A=25000\left(1+\frac{0.03}{4}\right)^{4\cdot 8}\implies A=25000(1.0075)^{32}[/tex]
Compound interest formula:
F=P(1+i)^n
P=present value (deposit) = 25000
i=interest per period (quarter) = 0.03/4
n=number of periods (quarter) = 8*4=32
So future value
F=25000(1+0.03/4)^32
= 31752.78
F=P(1+i)^n
P=present value (deposit) = 25000
i=interest per period (quarter) = 0.03/4
n=number of periods (quarter) = 8*4=32
So future value
F=25000(1+0.03/4)^32
= 31752.78