Respuesta :
First factor like terms
4x³ + 8x² - 25x - 50
4x²(x + 2) - 25(x + 2)
See that the factor in parenthesis is the same? Because they are the same, you can pair the outside factors together in a parenthesis.
(4x² - 25)(x+2)
factor (4x² - 25) = (2x + 5)(2x - 5)
= (2x - 5)(2x + 5)(x + 2)
4x³ + 8x² - 25x - 50
4x²(x + 2) - 25(x + 2)
See that the factor in parenthesis is the same? Because they are the same, you can pair the outside factors together in a parenthesis.
(4x² - 25)(x+2)
factor (4x² - 25) = (2x + 5)(2x - 5)
= (2x - 5)(2x + 5)(x + 2)
Hello there!
[tex]\boxed{ (((4 * (x^3)) + 23x^2) - 25x) - 50} \\ \\ \boxed{ ((2^2x^3 + 23x^2) - 25x) - 50} \\ \\ 4x3+8x2-25x-50 \ (is \ not \ a \ perfect \ cube.) \\ \\ We \ then \ factor \ \boxed{\boxed{ (2x + 5) * (2x - 5) }} \\ \\ (FINAL \ RESULT) \\ \\ \left[\begin{array}{ccc}\boxed{(2x - 5)(2x + 5)(x + 2)}\end{array}\right] [/tex]
Your correct answer would be (option c).
I hope this helps you!
[tex]\boxed{ (((4 * (x^3)) + 23x^2) - 25x) - 50} \\ \\ \boxed{ ((2^2x^3 + 23x^2) - 25x) - 50} \\ \\ 4x3+8x2-25x-50 \ (is \ not \ a \ perfect \ cube.) \\ \\ We \ then \ factor \ \boxed{\boxed{ (2x + 5) * (2x - 5) }} \\ \\ (FINAL \ RESULT) \\ \\ \left[\begin{array}{ccc}\boxed{(2x - 5)(2x + 5)(x + 2)}\end{array}\right] [/tex]
Your correct answer would be (option c).
I hope this helps you!