Factor completely 4x^3 + 8x^2 − 25x − 50.

(4x^2 − 25)(x + 2)
(2x − 2)(2x + 2)(x + 5)
(2x − 5)(2x + 5)(x + 2)
(2x − 5)(2x + 5)(x − 2)

Respuesta :

Catya
First factor like terms
4x³ + 8x² - 25x - 50
4x²(x + 2) - 25(x + 2)

See that the factor in parenthesis is the same? Because they are the same, you can pair the outside factors together in a parenthesis. 

(4x² - 25)(x+2)

factor (4x² - 25) = (2x + 5)(2x - 5)

= (2x - 5)(2x + 5)(x + 2)
Astute
Hello there!

[tex]\boxed{ (((4 * (x^3)) + 23x^2) - 25x) - 50} \\ \\ \boxed{ ((2^2x^3 + 23x^2) - 25x) - 50} \\ \\ 4x3+8x2-25x-50 \ (is \ not \ a \ perfect \ cube.) \\ \\ We \ then \ factor \ \boxed{\boxed{ (2x + 5) * (2x - 5) }} \\ \\ (FINAL \ RESULT) \\ \\ \left[\begin{array}{ccc}\boxed{(2x - 5)(2x + 5)(x + 2)}\end{array}\right] [/tex]

Your correct answer would be (option c).

I hope this helps you!