Respuesta :
Answer:
The arc length is [tex]32.84\ cm[/tex]
Step-by-step explanation:
we know that
The circumference of a circle is equal to
[tex]C=2\pi r[/tex]
we have
[tex]r=36\frac{3}{5}\ cm=\frac{36*5+3}{5}=\frac{183}{5}\ cm[/tex]
substitute
[tex]C=2(3.14)(\frac{183}{5})=229.848\ cm[/tex]
Remember that
[tex]2\pi[/tex] radians subtends the complete circle of length [tex]229.848\ cm[/tex]
so
by proportion
Find the arc length by a central angle of [tex]2\pi/7[/tex] radians
[tex]\frac{229.848}{2\pi}=\frac{x}{2\pi/7}\\ \\x=229.848*(2\pi/7)/(2\pi)\\ \\x=`32.84\ cm[/tex]