Quadrilateral ABCD ​ is inscribed in this circle. What is the measure of angle C? Enter your answer in the box
https://static.k12.com/nextgen_media/assets/8120449-SUM_CR_GMT_SemB_06_UC_DP100_864_003.jpg

Respuesta :

1. The sum of the opposite angles of the quadrilateral ABCD that is inscribed in the circle, is 180°. Therefore, the sum of all the angles is 360°.

 2. As you can see, m∠B=(2x-1)° and m∠D=(3x-59)° are opposite angles, then:

 m∠B+m∠D=180°

 3. When you substitute the values of m∠B and m∠D into m∠B+m∠D=180°, you obtain:

 m∠B+m∠D=180°
 (2x-1)+(3x-59)=180°

 4. You must clear the "x", as below:

 (2x-1)+(3x-59)=180°
 5x-60=180
 x=48°

 5. Now, you can find the value of m∠A, m∠B and m∠D:

 m∠A=2x+4
 m∠A=2(48)+4
 m∠A=100°

 m∠B=2x-1
 m∠B=2(48)-1
 m∠B=95°

 m∠D=3x-59
 m∠D=3(48)-59
 m∠D=85°

 6. Therefore, the value of m∠C is:

 m∠A+m∠B+m∠C+m∠D=360°
 m∠C=360-m∠A-m∠B-m∠D
 m∠C=360°-100°-95°-85°
 m∠C=80°

 What is the measure of angle C?

 The answer is: 80°