Respuesta :
Answer:
n = 5
a = 4.35926 cm
r = 3 cm
R = 3.7082 cm
A = 32.6944 cm²= 32.7 cm²
P = 21.7963 cm
x = 108 °
y = 72 °
Agenda:
r = inradius (apothem)
R = circumradius
a = side length
n = number of sides
x = interior angle
y = exterior angle
A = area
P = perimeter
π = pi = 3.14159...
√ = square root
Formula:
Inradius r = (1/2)a cot(π/n) = R cos(π/n)
n = 5
a = 4.35926 cm
r = 3 cm
R = 3.7082 cm
A = 32.6944 cm²= 32.7 cm²
P = 21.7963 cm
x = 108 °
y = 72 °
Agenda:
r = inradius (apothem)
R = circumradius
a = side length
n = number of sides
x = interior angle
y = exterior angle
A = area
P = perimeter
π = pi = 3.14159...
√ = square root
Formula:
Inradius r = (1/2)a cot(π/n) = R cos(π/n)
Answer:
[tex]\text{Hence, area of regular pentagon is }32.7 cm^2[/tex]
Step-by-step explanation:
Given that a regular pentagon has an apothem measuring 3 cm and a perimeter of 21.8 cm.
we have to find the area of pentagon.
Apothem=a=3 cm
Perimeter=s=21.8 cm
[tex]\text{Area of regular pentagon=}\frac{1}{2}\times apothem\times perimeter[/tex]
[tex]\frac{1}{2}\times s \times a[/tex]
[tex]=\frac{1}{2}\times 21.8\times 3[/tex]
[tex]=\frac{65.4}{2}=32.7 cm^2[/tex]
[tex]\text{Hence, area of regular pentagon is }32.7 cm^2[/tex]
Option 3 is correct.