Answer:
[tex](2x+y)(3x^2+y)=6x^3+3x^2y+2xy+y^2)[/tex]
Step-by-step explanation:
The given expression is [tex](2x+y)(3x^2+y)[/tex].
We expand the parenthesis using the distributive property to obtain;
[tex](2x+y)(3x^2+y)=2x(3x^2+y)+y(3x^2+y)[/tex]
We expand further to get;
[tex](2x+y)(3x^2+y)=6x^3+2xy+3x^2y+y^2)[/tex]
This gives us;
[tex](2x+y)(3x^2+y)=6x^3+3x^2y+2xy+y^2)[/tex]