Respuesta :
y = x2 - 18x
We look for the inverse of the function.
To do this, let's determine the value of x:
y = x2 - 18x
y = (x + (-18/2)) ^ 2 - ((-18) ^ 2/4) + 0
y = (x - 9) ^ 2 - 81
y + 81 = (x - 9) ^ 2
+/- root (y + 81) = (x - 9)
+/- root (y + 81) + 9 = x
We return the change:
f (x) ^ - 1 = +/- root (x + 81) + 9
Therefore, the values sought are:
b = 1
c = 81
d = 9
Answer:
f (x) ^ - 1 = +/- root (x + 81) + 9
b = 1
c = 81
d = 9
We look for the inverse of the function.
To do this, let's determine the value of x:
y = x2 - 18x
y = (x + (-18/2)) ^ 2 - ((-18) ^ 2/4) + 0
y = (x - 9) ^ 2 - 81
y + 81 = (x - 9) ^ 2
+/- root (y + 81) = (x - 9)
+/- root (y + 81) + 9 = x
We return the change:
f (x) ^ - 1 = +/- root (x + 81) + 9
Therefore, the values sought are:
b = 1
c = 81
d = 9
Answer:
f (x) ^ - 1 = +/- root (x + 81) + 9
b = 1
c = 81
d = 9
The inverse of a function is its opposite
The values of the unknown are: b = 1, c = 81 and d = 9
The function is given as:
[tex]y = x^2 - 18x[/tex]
Rewrite the equation in vertex form as:
[tex]y = (x - 9)^2 - 81[/tex]
Swap the positions of x and y
[tex]x = (y - 9)^2 - 81[/tex]
Add 81 to both sides
[tex](y - 9)^2 = x + 81[/tex]
take the square roots of both sides
[tex]y - 9 = \pm\sqrt{x + 81}[/tex]
Add 9 to both sides
[tex]y = \pm\sqrt{x + 81} + 9[/tex]
By comparison, the values of the unknown are:
b = 1, c = 81 and d = 9
Read more about inverse functions at:
https://brainly.com/question/14391067