Respuesta :

y = x2 - 18x

 We look for the inverse of the function.
 To do this, let's determine the value of x:
 y = x2 - 18x
 y = (x + (-18/2)) ^ 2 - ((-18) ^ 2/4) + 0
 y = (x - 9) ^ 2 - 81
 y + 81 = (x - 9) ^ 2
 +/- root (y + 81) = (x - 9)
 +/- root (y + 81) + 9 = x
 We return the change:
 f (x) ^ - 1 = +/- root (x + 81) + 9
 Therefore, the values sought are:
 b = 1
 c = 81
 d = 9
 Answer: 
 f (x) ^ - 1 = +/- root (x + 81) + 9 
 b = 1
 c = 81
 d = 9

The inverse of a function is its opposite

The values of the unknown are: b = 1, c = 81 and d = 9

The function is given as:

[tex]y = x^2 - 18x[/tex]

Rewrite the equation in vertex form as:

[tex]y = (x - 9)^2 - 81[/tex]

Swap the positions of x and y

[tex]x = (y - 9)^2 - 81[/tex]

Add 81 to both sides

[tex](y - 9)^2 = x + 81[/tex]

take the square roots of both sides

[tex]y - 9 = \pm\sqrt{x + 81}[/tex]

Add 9 to both sides

[tex]y = \pm\sqrt{x + 81} + 9[/tex]

By comparison, the values of the unknown are:

b = 1, c = 81 and d = 9

Read more about inverse functions at:

https://brainly.com/question/14391067