Respuesta :
Answer:
The answer in the procedure
Step-by-step explanation:
we know that
If two figures are similar. then the ratio of its areas is equal to the scale factor squared
In this problem we have a tile with a length of 1 foot by a width of 1 foot
The area of the tile is equal to
[tex]A=LW[/tex]
substitute the values
[tex]A=(1)(1)=1\ ft^{2}[/tex]
Let
z-------> the scale factor
x------> the area of 1/2 tile
y------> the area of the original tile
so
[tex]z^{2} =\frac{x}{y}[/tex]
substitute
[tex]z^{2} =\frac{(1/2)}{1}[/tex]
[tex]z=\frac{\sqrt{2}}{2}[/tex] -----> scale factor
therefore
To find the area of 1/2 tile must multiply the dimensions of the tile by the scale factor
so
[tex]L=1*\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}\ in[/tex]
[tex]W=1*\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}\ in[/tex]
Calculate the area
[tex]A=\frac{\sqrt{2}}{2}*\frac{\sqrt{2}}{2}=\frac{1}{2}\ ft^{2}[/tex]
Martin's method is incorrect because to find the area of 1/2 tile, he multiplies the dimensions by 1/2
so
[tex]L=1*\frac{1}{2}=\frac{1}{2}\ in[/tex]
[tex]W=1*\frac{1}{2}=\frac{1}{2}\ in[/tex]
the area will be
[tex]A=\frac{1}{2}*\frac{1}{2}=\frac{1}{4}\ ft^{2}[/tex]